
Protocol Based Attack Injection Framework to Fault
Diagnosis in Server Applications

Kalagotla satish kumar, L.R.Krishna kotapati

M.Tech, Software Engineering, Gitam Institute of Technology,
Gitam University, Vishakapatnam, India.	

	

Abstract – Today our increasing reliance on network connected
computer systems, security incidents and their causes are
important problems that need to be addressed. New threats and
forms of attacks are constantly being revealed by adversaries, to
compromise the secured server applications. This paper
describes an attack injection methodology is implemented in
AJECT tool, that can be used for susceptibility detection and
removal. The AJECT tool uses a specification of the server’s
communication protocol to automatically generate a large
number of attacks by using a predefined test case generation
algorithm. AJECT not only injecting the attacks through the
network to server and it monitors the behavior of the server
both from a client perspective and inside the target machine.
The observation of an unexpected behavior indicates a
successful attack and the potential existence of a flaw.
Experimental results show that AJECT can discover several
kinds of errors, in today secured application.

Keywords- Testing and debugging, Fault injection attack
injection, test design.

I. INTRODUCTION
 Now a days our everyday life activities has increased over the
years, as more and more tasks are accomplished with computer
systems help. The advancements in software development have
provided us with an increasing number of useful applications with
an ever improving functionality. These enhancements, however, are
achieved in most cases with larger and more complex projects,
which require the coordination of several teams. In application
development process we are using third party software, such as
COTS components, is to speed up development, even though in
many cases it is poorly documented and supported. Because of
scarily documented and tested In the background, the ever-present
trade-off between thorough testing and time to deployment affects
the quality of the software. These factors, allied to the current
development and testing methodologies, have proven to be
inadequate and insufficient to construct dependable software.
Everyday, new vulnerabilities are found in what was previously
believed to be secure applications, unlocking new risks and security
hazards that can be exploited by malicious adversaries.
 An intrusion is only materialized when the right attack is
discovered and applied to exploit that vulnerability. After an
intrusion, the system might or might not fail, depending on the kind
of capabilities it possesses to deal with errors introduced by the
adversary. Sometimes the intrusion can be tolerated [32], but in the
majority of the current systems, it leads almost immediately to the
violation of one or more security properties (e.g .,confidentiality or
availability).
 Recently several techniques can be employed to improve the
dependability of a system with respect to malicious faults [1].Of
course, intrusions would never arise if all vulnerabilities could be
eliminated. Vulnerability removal can be performed both during the

development and operational phases. Intrusion prevention (e.g.,
vulnerability removal) has been advocated because it reduces the
power of the attacker [32]. In fact, even if the ultimate goal of zero
vulnerability is never attained, vulnerability removal reduces the
number of entry points into the system, making the life of the
adversary increasingly harder (and ideally discouraging further
attacks).
 This paper describes a tool called AJECT – Attack in-JECtion
Tool that can be used for vulnerability detection and removal.
AJECT simulates the behavior of an adver-sary by injecting attacks
against a target system. Then, it observes the execution of the target
system to determine if the attacks have caused a failure. In the
affirmative case, this indicates that the attack was successful, which
reveals the existence of a vulnerability. After the identification of a
flaw, one can employ traditional debugging techniques to examine
the application code and running environment, to find out the origin
of the vulnerability and allow its subsequent elimination.
 AJECT tool was designed to look for vulnerabilities in network
server applications, although it can also be utilized with local
daemons. We chose servers because, from a security perspective,
they are probably the most relevant components that need protection
because they constitute the primary contact points of a network
facility. AJECT does not need the source code of the server to
perform the attacks, i.e., it treats the server as a black box. However,
in order to be able to generate intelligent attacks, AJECT has to
obtain a specification of the protocol utilized in the communication
with the server.
 To demonstrate the usefulness of our approach, we have
conducted 12 attack injection experiments with 6 e-mail servers
running POP and IMAP services. The main objective was to
investigate if AJECT could automatically discover previously
unknown vulnerabilities in fully developed and up-to-date server
systems. Our evaluation confirmed that AJECT could find different
classes of vulnerabilities in five of the servers, and assist the
developers in their removal.

Figure 1 . Existed Attacking methodology

Kalagotla satish kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4863-4867

4863

2. INTRUSION DETECTION BY ATTACKS
The AVI(attack, vulnerability, intrusion)composite fault model
introduced in [1] helps us to understand the mechanisms of failure
due to several classes of malicious faults (seeFigure1). Fig. 1 shows
a model of a component with existing vulnerabilities. Boxes in the
figure represent the different modules or software layers that
compose the component, with the holes symbolizing access being
allowed (as intended by the developers or inadvertently through
some vulnerability). Lines depict the interaction between the
various layers. The same rationale can be applied recursively to any
abstraction level of a component, from the smallest subcomponent
to more complex and larger systems, so we will use the terms
component and system interchangeably.
 The external access to the component is provided through a known
Interface Access, which receives the input arriving, for instance, in
network packets or disk files, and eventually returns some output.
Whether the component is a simple function that performs a specific
task or a complex system, its intended functionality is, or should be,
protected by Input Data Validation layers. These additional layers of
control logic are supposed to regulate the interaction with the
component, allowing it to execute the service specification only
when the appropriate circumstances are present (e.g., if the client
messages are in compliance with the protocol specification or if the
procedure parameters are within some bounds). In order to achieve
this goal, these layers are responsible for the parsing and validation
of the arriving data. The purpose of a component is defined by its
Implemented Functionality. This last layer corresponds to the
implementation of the service specification of the component, i.e., it
is the sequence of instructions that controls its behavior to
accomplish some well-defined objective, such as responding to
client requests according to some standard network protocol.
 By accessing the interface, an adversary may persistently look for
vulnerabilities by stressing the component with unusual forms of
interaction, such as sending wrong message types or opening
malformed files. These attacks are malicious interaction faults
against the component’s interface [1]. A dependable system should
continue to

Figure 2 . Proposed Attack Injection Methodology

operate correctly, even in the presence of these faults, i.e., it should
keep executing in accordance with the service specification.
However, if one of these attacks causes an abnormal behavior of the
component, it suggests the presence of vulnerability somewhere on
the execution path of its processing logic.

3. THE ATTACK INJECTION METHODOLOGY
There are four basic entities in the architecture of AJECT, the Target
System, the Target Protocol Specification, the Attack Injection the
Monitoring system (seeFigure3). The first entity corresponds to the
system we want to test and the last three are the main components of
AJECT. The Target System is composed by the target application
and its execution environment, which includes the operating system,
middleware libraries and hardware configuration. The target
application is typically some service that can be invoked remotely
from client programs (e.g., a mail or FTP server). In addition, it can
also be a local daemon supporting a given task of the operating
system. In both cases, the target application uses a well-known
protocol to communicate with the clients, and these clients can carry
out attacks by transmitting malicious packets. If the packets are not
correctly processed, the target can suffer various kinds of errors with
distinct consequences, ranging, for instance, from a slow down to a
crash.
 The architecture was defined to achieve two main purposes, the
automatic injection of attacks and the data collection for analysis.
However, its design was done in such a way that there is a clear
separation between the implementation of these two goals. On one
hand, in order to obtain extensive information about the execution,
approximate relation between AJECT and the target is necessary.
Therefore, the Monitor needs to run in the same machine as the
target, where it can use the low level operating system functions to
get, for example, statistics about the CPU and memory usage. On
the other hand, the injection of attacks can usually be performed
from a different machine. In fact this is a desirable situation, since it
is convenient to maintain the target as independent as possible from
the Injector, so that interference is kept to a minimal level.

Figure 3. AJECT tool Architecture.

The Attack inJECtion Tool (AJECT) is a vulnerability detection tool
that implements the proposed methodology. Its architecture and
main components can be seen in Fig. 3. The architecture was

Kalagotla satish kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4863-4867

4864

developed to achieve automatic injection of attacks independently of
the target server’s implementation. Furthermore, it was built to be
flexible regarding the classes of vulnerabilities that can be
discovered and the method used to monitor the target system.
Therefore, AJECT’s implementation provides a framework to create
and evaluate the impact of different test case generation algorithms
(i.e., by supplying various Test Definitions) and other monitoring
approaches (i.e., by implementing custom Monitors).
 The Target System is the entire software and hardware
components that comprise the target application and its execution
environment, including the operating system, the software libraries,
and the system resources. The Network Server is typically a service
that can be queried remotely from client programs (e.g., a mail or
FTP server). The target application uses a well-known protocol to
communicate with the clients, and these clients can carry out attacks
by transmitting erroneous packets. If the packets are not correctly
processed, the target can suffer various kinds of errors with distinct
consequences.	
 The Network Server Protocol Specification is a
graphical user interface component that supports the specification of
the communication protocol used by the server. This specification is
utilized by the Attack Generator to produce a large number of test
cases. The Attack Injector is responsible for the actual execution of
the attacks by transmitting malicious packets to the server. It also
receives the responses returned by the target and the remote
execution profile collected by the Monitor. Some analysis on the
information acquired during the attack is also performed (e.g., such
as known fatal signals or connection error) to determine if a
vulnerability was exposed.
A. Test Attacking Hierarchy
The injection of an attack is related to the type of test one wants to
perform and materialized through the actual transmission of
(malicious) packets. Therefore, the attack concept is relatively vague
and can bequite generic. For instance, an attack could correspond to
something as general as the creation of requests that violate the
syntax of the target’s protocol messages, or as specific as a special
request that contains a secret username and password. In AJECT,
the process of creating an attack can be seen at three levels. The first
and most generic level defines the a general test classes. Each test
will then be systematically instantiated resulting in specific attacks
for that particular test (the second level). In the last level, an attack
is implemented through the transmission of its corresponding
packets. As an example, consider one of the tests currently
supported in AJECT, a syntax test. This test validates the format of
the packets utilized by the target protocol, and looks for processing
errors in the number and order of the packets’ fields. Even for a
straightforward protocol with a few different packets, it is quite
simple to generate a reasonable number of distinct attacks, i.e., to
create several instances of the test. For example, just imagine a
packet with three fields that have to appear in a given order, and an
attack corresponds to the re-ordering of these fields.
B. AJECT Component Phases
The overall attack injection process is carried in two separate
phases: the attack generation phase, performed once per
communication protocol, and the injection campaign, executed once
per target system.
C. Attack Generation Component
The purpose of attack generation is to create a series of attacks that
can be injected in the target system. The design of the tool does not
require the source code of the server to be available to devise the
attacks. This allows AJECT to support a larger number of target
systems, such as commercial servers. Instead, the tool employs a
specification of the communication protocol of the server, which, in
practice, characterizes the server’s external interface to the clients.

Therefore, by exploring the input space defined by the protocol, it is
possible to exercise much of the intended functionality of the target,
i.e., the parts of the code that are executed when processing the
clients requests. In contrast to the source code, which is often
inaccessible, communication protocol send to be reasonably well
documented, at least for standard servers(e.g., the Internet protocols
produced by IETF). Consequently, even if the information about a
server is scarce, it is still possible to create good test cases as long as
the reis some knowledge about the communication protocol. AJECT
offers a graphical user interface tool, called Network Server
Protocol Specification, to carry out the specification of the
communication protocol. The tool operator can describe the protocol
states and messages, and identify the data types and acceptable
ranges of values of each field of a message. Messages are divided
into two kinds: messages that request the execution of some specific
operation (not changing the state of the protocol) and transition
messages that make the protocol jump from one state to another
(e.g., a login message). AJECT uses this information to explore the
entire protocol state space by creating test cases with innocuous
transition messages preceding the attack message. This procedure is
exhaustive because all states are eventually tested with every
operation that is defined for each state.
Attack generator will generates various types of test definitions to
find the vulnerabilities in server applications.
Delimiter Test Definition is specific type of test creates messages
with illegal or missing delimiters of a field. For example, on text-
based protocols, each field is delimited by a space character and,
usually at the end of the messages, there are carriage return and line
feed characters. For example this test definition would generate
various login messages with a valid username and password but
either with or without delimiters.
 Syntax Test Definition is type of test generates attacks that infringe
on the syntax of the protocol. The currently implemented syntax
violations consist on the addition, elimination, or reordering of each
field of a correct message. Note that, as with the previous algorithm,
the field specifications are kept unchanged, i.e., they only hold valid
values. Like all other test definitions, after generating new message
specifications (i.e., variations from the original ones), each
specification will result in several test cases, each one trying a
different combination of possible field data. Below are depicted
some of the variations of the original message specification from
which test cases are going to be created:

• [A] (removed field [B]),
• [B] [B] (duplicated field [B]), and
• [B] [A] (swapped fields).
•

Figure .4 Example of predefined test cases.

D. Attack Injector Component
The Injector is decomposed into three groups of modules, each one
corresponding to a level of the attack generation hierarchy (see

Kalagotla satish kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4863-4867

4865

Figure 3). In every level there is a module whose function is related
to the construction of the attacks and another module for the
collection and analysis of the responses. In more detail, at test level
the test manager controls the whole process of attack injection. It
receives a protocol specification and a description of a test and then
it calls the attack generator to initiate a new attack. The test analyzer
saves and examines various information about the attacks, to
determine the effectiveness so fastest to discover vulnerabilities.
Attack level the actual creation of new attacks is the responsibility
of the attack generator. The attack analyzer collects and studies the
data related to the target’s behavior under a particular attack. It
obtains data mainly from two sources: the responses returned by the
target after the transmission of the malicious packets and the
execution and resource usage data gathered by the Monitor.	
 Packet
level The packet injector connects to the target application and sends
the packets defined by the attack generator. Currently, it can
transmit messages using either the TCP or UDP protocols. The main
task of the packet collector is the storage of the network data (i.e.,
attack injection packets and received responses).
E. Monitor Component.
Although the Monitor appears to be a simple component, it is a
fundamental entity, and it hides some complex aspects. On one side,
this component is in charge of setting up all testing environment in
the target system: it needs to start up the target application, perform
all configuration actions, initiate the monitoring activities, and in the
end, to free all utilized resources (e.g., processes, memory, disk
space). We chose to reset the whole system after each experiment to
guarantee that there are no interferences among the attacks. On the
other side, the Monitor observes the execution of the the target while
the attack is being carried out. This task is highly dependent on the
mechanisms that are available in the local operating system (e.g., the
ability to catch signals).The monitor is composed by the modules:
the execution module, which coordinates the various tasks of each
experiment and traces the target execution; the data collector,
responsible for monitoring data storage and its transmission back to
the Injector ;and the sync controller that determines the beginning
and ending of each experiment.
F.Test and Attack Analyzer
After the execution of the experiments, AJECT must be able to
detect the presence of vulnerabilities by resorting to the analysis of
the target’s behavior. For each action there’s a reaction, so for each
attack injection there’s the target’s reaction. The Test and Attack
analyzer modules examine an attack injection experiment result by
observing the network data of the respective attack and response
messages, and by correlating this information with the one provided
by the execution monitor module (i.e., target’s execution and
resource usage data). AJECT can then assert about the presence of a
vulnerability in a specific protocol command by looking to the
targets execution, resource usage (e.g., resource allocation
starvation), or protocol responses (e.g., a message giving access
authorization to a forbidden file) during a particular attack injection.
G. Attack Generation algorithm
Attack generation algorithm can be used to generate the various
types of attacks based on server application protocol specification
.The given below algorithm will generates various types of attacks
by embedding the predefined malicious tokens and illegal values in
the testcases. The algorithm has the following structure: All states
and message types of the protocol are traversed,maximizing the
protocol space; then each test case is generated based on one
message type. This algorithm differs from the others because it
systematically populates each field with wrong values, instead of
only resorting to the legalvalues.

IV. EXPERIMENTAL RESULTS
The current section presents an evaluation of the vulnerability
discovery capabilities of AJECT. This study carried out several
experiments to accomplish three main objectives: One goal was to
confirm that AJECT is capable of catching a significant number of
vulnerabilities automatically. A second goal was to demonstrate that
different classes of vulnerabilities could be located with the tool, by
taking advantage of the implemented tests. A third goal was to
illustrate the generic nature of the tool, by showing that it can
support attack injections on distinct IMAP server applications. To
achieve these objectives, we used AJECT to expose several
vulnerabilities that were reported in the past in some IMAP
products. Basically, the most well known bug tracking sites were
searched, to find out all IMAP vulnerabilities that were disclosed in
the current year. The experiments consisted in using AJECT to
attack these products, to determine if the tool could detect the flaws.
Another approach that we considered following was to spend all our
resources testing a small group of IMAP servers (one or two), trying
to discover a new set of vulnerabilities.
A. Vulnerability Assessment
After the identification of the products with flaws, it was necessary
to obtain as many applications (with the right versions) as possible.
We had one main difficulty while attempting to accomplish this
objective – in some cases the vulnerable versions were no longer
available in the official websites.

Table1 presents a summary of the attacks generated by AJECT that
successfully activated the software bugs. Each line contains our
internal application identifier (ID, also see Table 3), the type of
vulnerability (where BO is a heap or stack Buffer Overflow; ID is an
Information Disclosure; FS is a Format String; DoS is a Denial of
Service [26]), the IMAP state in which the attack was
successful(also see Table 1), and the attack itself. In order to keep
the description of the attacks small, we had to use a condensed form
of command representation where: <A×N> means letter ’A’
repeated N times ; and<OTHER U>corresponds to another existing
username.

5.2.	
 Vulnerability	
 Assessment
After	
 the	
 identification	
 of	
 the	
 products	
 with	
 flaws,	
 it	
 was

necessary	
 to	
 obtain	
 as	
 many	
 applications	
 (with	
 the	
 right	
 ver-­‐
sions)	
 as	
 possible.	
 We	
 had	
 one	
 main	
 difficulty	
 while	
 at-­‐
tempting	
 to	
 accomplish	
 this	
 objective	
 –	
 in	
 some	
 cases	
 the

5.2.	
 Vulnerability	
 Assessment
After	
 the	
 identification	
 of	
 the	
 products	
 with	
 flaws,	
 it	
 was

necessary	
 to	
 obtain	
 as	
 many	
 applications	
 (with	
 the	
 right	
 ver-­‐
sions)	
 as	
 possible.	
 We	
 had	
 one	
 main	
 difficulty	
 while	
 at-­‐
tempting	
 to	
 accomplish	
 this	
 objective	
 –	
 in	
 some	
 cases	
 the

5.2.	
 Vulnerability	
 Assessment
After	
 the	
 identification	
 of	
 the	
 products	
 with	
 flaws,	
 it	
 was

necessary	
 to	
 obtain	
 as	
 many	
 applications	
 (with	
 the	
 right	
 ver-­‐
sions)	
 as	
 possible.	
 We	
 had	
 one	
 main	
 difficulty	
 while	
 at-­‐
tempting	
 to	
 accomplish	
 this	
 objective	
 –	
 in	
 some	
 cases	
 the

Kalagotla satish kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4863-4867

4866

Table .1. Attacks generated by AJCET on IMAP Serves

For the two applications that we were unable to get, it was necessary
to employ a different approach in the tests. The Injector was used to
generate and carry out the attacks against a dummy IMAP server.
Basically, this server only stored the contents of the received
packets and returned simple responses. The packets were then later
analyzed to determine if one of the attacks could activate the
reported vulnerability. In Table 1 a) are presented the results of
these experiments, and in both cases an attack was generated that
could supposedly explore the vulnerabilities.
 The vulnerabilities actually detected with AJECT are presented in
Table 1 b). From the table it is possible to conclude that AJECT is
capable of detecting several kinds of bugs, ranging from buffer
overflows to information disclosure. Since we had a limited time for
testing, and since we wanted to evaluate a large number of
applications, we had to interrupt the tests as soon as a vulnerability
was discovered so only the first successful attack is presented. In the
few cases where experiments were run for a longer period, we
noticed that several distinct attacks were able to uncover the same
problem. For example, after 24500 injections against the GNU Mail
utils, there were already more than 200 attacks that similarly crashed
the application. This section gives a brief overview of the IMAP
communication protocol that is utilized by the servers under test. It
also describes the classes of attacks that were tried by the injector,
and provides some information about the test cases.
Some times it was difficult to determine if distinct attacks were
equivalent in terms of discovering the same flaw, specially in the
cases where they used different IMAP commands. For example, if a
bug is in the implementation of a validation routine that is called by
the various commands, then the attacks would be equivalent. On the
other hand, if no code was shared then there should be different
bugs. Therefore, in order to find out exactly if attacks are equivalent,
one would need to have access to the source code of the applications
(something impossible to obtain for a majority of the products).
Consequently, we decided to take a conservative approach, where all

attacks were deemed equivalent except in the situations where they
correspond without any doubt to different vulnerabilities.
 During the course of our experiments, we were able to discover a
previously unknown vulnerability (see Table 1 c)). The attack sends
a large string in a SEARCH command that causes a crash in the
server. This indicates that the bug is a boundary condition
verification error, which probably corresponds to a buffer overflow.
Several versions of the E-Mail Server application were tested,
including the most recent one, and all of them were vulnerable to
this attack.

V. CONCLUSIONS
The paper presents a tool for the discovery of vulnerabilities in
server applications. AJECT simulates the behavior of a malicious
adversary by injecting different kinds of attacks against the target
server. In parallel, it observes the application while it runs in order
to collect various information. This information is later analyzed to
determine if the server executed in correctly, which is a strong
indication that a vulnerability exists.
To evaluate the usefulness of the tool, several experiments were
conducted with many IMAP products. These experiments indicate
that AJECT could be utilized to locate a significant number of
distinct types of vulnerabilities (e.g., buffer over flows, format
strings, and information disclosure bugs).In addition, AJECT was
able to discover a new buffer overflow vulnerability.

VI. REFERENCES
[1] A. Adelsbach, D. Alessandri, C. Cachin, S. Creese,Y. Deswarte, K. Kursawe, J. C.

Laprie, D. Powell, B. Randell, J. Riordan, P. Ryan, W. Simmonds,R. Stroud, P.
Ver´issimo, M. Waidner, and A. Wespi. Conceptual Model and Architecture of
MAFTIA. Project MAFTIA deliverable D21. Jan. 2002.
http://www.research.ec.org/maftia/deliverables/D21.pdf.

[2] A.Albinet, J.Arlat, and J.-C.Fabre. Characterization of the impact of faulty drivers
on the robustness of the Linux kernel. In Proc. of the Int. Conference on
Dependable Systems and Networks, pages 867–876, June2004.

[3] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell. Fault injection and
dependability evaluation of fault-tolerant systems. IEEE Trans. on Computers,
42(8):913–923, Aug.1993.

[4] J. Arlat, Y. Crouzet, and J. Laprie. Fault injection for dependability validation of
fault-tolerant computer systems. In Proc. of the Int. Symp. on Fault-Tolerant
Computing, pages 348–355, June1989.

[5] M. Bishop and M. Dilger. Checking for race conditions in file accesses. Computing
Systems, 9(2):131–152, Spring 1996.

[6] A. Brown, L. C. Chung, and D. A. Patterson. Including the human factor in
dependability benchmarks. In Workshop on Dependability Benchmarking, in
Supplemental Volume of DSN2002,pages F–9–14, June2002.

[7] J. Carreira, H. Madeira, and J. G. Silva. Xception: A technique for the experimental
evaluation of dependability in modern computers. IEEE Trans. on Software
Engineering,24(2):125–136, Feb.1998.

[8] J. Christ mansson and R. Chillarege. Generation of an error set that emulates
software faults. In Proc. of the Int. Symp. On Fault-Tolerant Computing,
pages304–313, June1996.

[9] C.Cowan, S.Beattie, J.Johansen, and P.Wagle. Point guard: Protecting pointers from
buffer overflow vulnerabilities. In Proc.ofthe12th USENIX Security Symposium,
Aug.2003.

[10] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang, and H. Hinton. Stack Guard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In Proc. of the 7th USENIX Security
Conference, pages63–78, Jan.1998.

[11] M. Crispin. Internet Message Access Protocol – Version 4rev1. Internet
Engineering Task Force, RFC 3501, Mar.2003.

[12] J.Duraes˜ and H.Madeira. Definition of software fault emulation operators: A field
data study.In Proc. Of the Int. Conference on Dependable Systems and Networks,
pages 105–114,June2003.

[13] J. Duraes˜ and H. Madeira. A methodology for the automate identification of buffer
overflow vulnerabilities in executable software without source-code. In Proc. of
the Second Latin American Symposium on Dependable Computing,Oct.2005.

[14] D. Farmer and E. H. Spafford. The COPS security checker system. In Proc. of the
Summer USENIX Conference, pages 165–170, June1990.

[15] Found Stone Inc. Found Stone Enterprise, 2005. http://www.foundstone.com.
[16] K.Goswami, R.Iyer, and L.Young. Depend: A simulation based environment for

system level dependability analysis. IEEE Trans. on Computers,46(1):60–74,
Jan.1997.

Kalagotla satish kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4863-4867

4867

